

Cytotoxic Norsesquiterpene Peroxides from the Endophytic Fungus Talaromyces flavus Isolated from the Mangrove Plant Sonneratia apetala

Hanxiang Li,[†] Hongbo Huang,[†] Changlun Shao,[†] Huarong Huang,[‡] Jieyi Jiang,[†] Xun Zhu,[†] Yayue Liu,[†] Lan Liu,⁺ Yongjun Lu,⁺ Mengfeng Li,⁺ Yongcheng Lin,^{*,+} and Zhigang She^{*,+}

⁺School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, People's Republic of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, People's Republic of China, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China

[‡]Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China

Supporting Information

ABSTRACT: Four new norsesquiterpene peroxides, named talaperoxides A-D (1-4), as well as one known analogue, steperoxide B (5, or merulin A), have been isolated from a mangrove endophytic fungus, Talaromyces flavus. Their structures were elucidated mainly by 1D and 2D NMR. Structures of 1, 2, and 5 were further confirmed by single-crystal X-ray diffraction, and their absolute configurations were also deter-

mined using copper radiation. Cytotoxic activities of compounds 1-5 were evaluated in vitro against human cancer cell lines MCF-7, MDA-MB-435, HepG2, HeLa, and PC-3. Compounds 2 and 4 showed cytotoxicity against the five human cancer cell lines with IC₅₀ values between 0.70 and 2.78 μ g/mL.

repene peroxides possess a wide range of biological activities, l including antimalarial, antitumor, antimicrobial, and antiviral activities.^{1–3} A typical example of sesquiterpene peroxide is artemisinin, which has already been clinically applied as an antimalarial drug.⁴ Mangrove endophytes have proven to be a rich source of novel biologically active compounds.^{5–8} Recently, in our ongoing search for new and potent antitumor natural products from mangrove endophytic fungi, four new norsesquiterpene peroxides, talaperoxides A-D (1-4), along with one known analogue, steperoxide B^9 (5, also named merulin A^{10}), were isolated from the fungus Talaromyces flavus, which was isolated from the leaves of a mangrove plant, Sonneratia apetala, collected on the coastal saltmarsh of the South China Sea. In the in vitro cytotoxic assays, compounds 1-5 displayed cytotoxicity against human cancer cell lines MCF-7, MDA-MB-435, HepG2, HeLa, and PC-3. Herein, we report the isolation, structure elucidation, and in vitro cytotoxic activity of these sesquiterpene peroxides. A possible biosynthetic pathway for 1-5 was also proposed in this paper.

RESULTS AND DISSCUSION

Compound 1 was isolated as colorless crystals. The molecular formula of C₁₆H₂₄O₅ (five degrees of unsaturation) was determined by HRESIMS. The ¹H, ¹³C, and DEPT NMR spectra (Table 1) supported the presence of four singlet methyls (Me-12,

Me-13, Me-14, and Me-16), five methylenes (C-1, C-4, C-5, C-9, and C-10), two oxymethines (C-2 and C-3), three quaternary carbons (C-6, C-7, and C-11), one ketone carbonyl (C-8), and one ester carbonyl (3-OAc). With five degrees of unsaturation accounted for by the molecular formula, the structure of 1 was suggested to contain three rings, in association with two carbonyls. Analysis of the ${}^{1}H-{}^{1}H$ COSY spectrum revealed two spin systems (C-1 to C-5 and C-9-C-10) (Figure 1). The HMBC correlations of H-1, 2, 4, 5/C-6 established a six-membered ring (ring A, C-1-C-6). An acetoxy group was attached to ring A at

Received: February 17, 2011 Published: May 05, 2011

1			2		
$\delta_{ m C}$, type	$\delta_{ m H\prime}$ mult. (J in Hz)	HMBC	$\delta_{ m C}$, type	$\delta_{ m H\prime}$ mult. (J in Hz)	HMBC
27.5, CH ₂	2.41, m	C-3, 5, 6	26.3, CH ₂	2.52, ddd (13.5, 5.2, 3.6)	C-3, 5, 6
	2.02, m	C-2, 3, 5, 11		1.40, dd (13.5, 1.2)	C-3, 5, 11
76.0, CH	4.23, m	C-1, 3, 4, 6	77.3, CH ₂	4.30, m	C-3, 4, 6
71.7, CH	4.87, ddd (11.3, 7.6, 3.8)	C-1, 2	72.8, C	4.88, ddd (11.1, 7.9, 3.1)	C-1, 2, 4
30.5, CH ₂	1.99, m	C-2, 3, 6	28.3, CH ₂	2.61, m	C-3
	1.57, m	C-6		2.00, m	C-3, 6
25.4, CH ₂	2.14, m	C-1, 4, 6, 11	28.1, CH ₂	1.85, m	C-1, 4, 6, 11
	1.61, m	C-7		1.77, m	C-1, 3, 4, 6, 7
41.4, C			43.3, C		
90.0, C			89.8, C		
207.9, C			208.1, C		
35.7, CH ₂	2.65, ddd (15.1, 14.6, 6.6)	C-8, 10, 11	35.5, CH ₂	2.81, ddd (15.4, 13.0, 7.5)	C-8, 10, 11
	2.39, m	C-7, 8, 11		2.30, ddd (15.4, 5.7, 2.4)	C-7, 8, 10, 11
35.8, CH ₂	1.97, m	C-6, 8, 9, 11	37.0, CH ₂	2.03, m	C-6, 8, 11
	1.55, m	C-6, 8, 9, 11		1.67, ddd (14.2, 7.5, 2.4)	C-6, 8
37.4, C			36.1, C		
26.3, CH ₃	0.95, s	C-6, 10, 11, 13	25.2, CH ₃	1.25, s	C-6, 10, 11, 12
24.7, CH ₃	1.23, s	C-6, 10, 11, 12	27.5, CH ₃	0.99, s	C-6, 10, 11, 13
21.5, CH ₃	1.38, s	C-6, 7, 8	24.2, CH ₃	1.90, s	C-6, 7, 8
171.0, C			171.3, C		
21.3, CH ₃	2.06, s	C-15	21.4, CH ₃	2.08, s	C-15
	$\begin{array}{c} \hline \delta_{\rm C}, \mbox{type} \\ 27.5, \mbox{CH}_2 \\ 76.0, \mbox{CH} \\ 71.7, \mbox{CH} \\ 30.5, \mbox{CH}_2 \\ 25.4, \mbox{CH}_2 \\ 25.4, \mbox{CH}_2 \\ 41.4, \mbox{C} \\ 90.0, \mbox{C} \\ 207.9, \mbox{C} \\ 35.7, \mbox{CH}_2 \\ 35.8, \mbox{CH}_2 \\ 35.8, \mbox{CH}_2 \\ 37.4, \mbox{C} \\ 26.3, \mbox{CH}_3 \\ 24.7, \mbox{CH}_3 \\ 21.5, \mbox{CH}_3 \\ 171.0, \mbox{C} \\ 21.3, \mbox{CH}_3 \end{array}$	$\begin{array}{ c c c c }\hline & & & & & & & & & & & & & & & & & & &$	$\begin{array}{ $	$\begin{array}{ c c c c c c c c } \hline l \\ \hline \hline \delta_{\rm C}, type & \hline \delta_{\rm H}, {\rm mult.} (J {\rm in } {\rm Hz}) & {\rm HMBC} & \hline \delta_{\rm C}, type \\ \hline \hline \delta_{\rm C}, type & \hline \lambda_{\rm H}, {\rm mult.} (J {\rm in } {\rm Hz}) & {\rm HMBC} & \hline \delta_{\rm C}, type \\ \hline \hline 27.5, {\rm CH}_2 & 2.41, {\rm m} & {\rm C-3}, 5, 6 & 26.3, {\rm CH}_2 \\ 2.02, {\rm m} & {\rm C-2}, 3, 5, 11 & \\ \hline 76.0, {\rm CH} & 4.23, {\rm m} & {\rm C-1}, 3, 4, 6 & 77.3, {\rm CH}_2 \\ 71.7, {\rm CH} & 4.87, {\rm ddd} (11.3, 7.6, 3.8) & {\rm C-1}, 2 & 72.8, {\rm C} \\ 30.5, {\rm CH}_2 & 1.99, {\rm m} & {\rm C-2}, 3, 6 & 28.3, {\rm CH}_2 \\ 1.57, {\rm m} & {\rm C-6} & & \\ 25.4, {\rm CH}_2 & 2.14, {\rm m} & {\rm C-1}, 4, 6, 11 & 28.1, {\rm CH}_2 \\ 1.61, {\rm m} & {\rm C-7} & & \\ \hline 41.4, {\rm C} & & & & \\ 90.0, {\rm C} & & & & \\ 207.9, {\rm C} & & & & & \\ 208.1, {\rm C} & & & \\ 35.7, {\rm CH}_2 & 2.65, {\rm ddd} (15.1, 14.6, 6.6) & {\rm C-8}, 10, 11 & 35.5, {\rm CH}_2 \\ 2.39, {\rm m} & {\rm C-7}, 8, 11 & \\ 35.8, {\rm CH}_2 & 1.97, {\rm m} & {\rm C-6}, 8, 9, 11 & \\ 37.4, {\rm C} & & & & \\ 1.55, {\rm m} & {\rm C-6}, 8, 9, 11 & \\ 37.4, {\rm C} & & & & \\ 26.3, {\rm CH}_3 & 0.95, {\rm s} & {\rm C-6}, 10, 11, 13 & 25.2, {\rm CH}_3 \\ 24.7, {\rm CH}_3 & 1.23, {\rm s} & {\rm C-6}, 10, 11, 12 & 27.5, {\rm CH}_3 \\ 21.5, {\rm CH}_3 & 1.38, {\rm s} & {\rm C-6}, 7, {\rm 8} & 24.2, {\rm CH}_3 \\ 17.10, {\rm C} & & & & \\ 17.10, {\rm C} & & & & \\ 17.13, {\rm C} & & \\ 21.3, {\rm CH}_3 & 2.06, {\rm s} & {\rm C-15} & & \\ \end{array}$	$\begin{array}{ c c c c c c c } \hline l \\ \hline l \\ \hline b_{Cr} type & \hline b_{Hr} mult (J in Hz) & HMBC & \hline b_{C} type & \hline b_{Hr} mult (J in Hz) \\ \hline c_{7} S, CH_2 & 2.41, m & C-3, S, 6 & 26.3, CH_2 & 2.52, ddd (13.5, S.2, 3.6) & 1.40, dd (11.1, 7.9, 3.1) & 30.5, CH_2 & 1.99, m & C-2, 3, 6 & 28.3, CH_2 & 2.61, m & 1.57, m & C-6 & 2.00, m & 2.54, CH_2 & 2.14, m & C-1, 4, 6, 11 & 28.1, CH_2 & 1.85, m & 1.61, m & C-7 & 1.77, m & 1.41, C & 43.3, C & 89.8, C & 200.9, C & 208.1, C & 2.39, m & C-7, 8, 11 & 2.30, ddd (15.4, 5.7, 2.4) & 35.8, CH_2 & 1.97, m & C-6, 8, 9, 11 & 35.5, CH_2 & 2.81, ddd (15.4, 13.0, 7.5) & 2.39, m & C-7, 8, 11 & 2.30, ddd (15.4, 5.7, 2.4) & 35.8, CH_2 & 1.97, m & C-6, 8, 9, 11 & 37.0, CH_2 & 2.03, m & 1.55, m & C-6, 8, 9, 11 & 37.0, CH_2 & 2.03, m & 1.55, m & C-6, 8, 9, 11 & 37.0, CH_2 & 2.03, m & 1.67, ddd (14.2, 7.5, 2.4) & 37.4, C & 36.1, C & 36.1, C & 36.1, C & 36.1, C & 37.4, C & 36.1, C & 36.1, C & 37.4, C & 36.1, C & 36.1, C & 36.1, C & 37.4, C & 37$

Table 1. ¹H (400 MHz) and ¹³C (100 MHz) NMR Spectroscopic Data for Compounds 1 and 2 (CDCl₃)

Figure 1. ${}^{1}H-{}^{1}H$ COSY (bold) and selected HMBC (arrow) correlations of 1 and 3.

C-3 on the basis of the HMBC correlation of H-3/C-15. The HMBC correlations from *gem*-dimethyl groups (H₃-12 and H₃-13) to C-6, C-10, and C-11 and from H₃-14 to C-6, C-7, and C-8, as well as the correlations of H-9/C-7, C-11 and of H-10/C-8, determined a 2,4,4-trimethyl-3-bisubstituted-cyclohexanone (ring B). Rings A and B were fused at spiro carbon C-6. Considering the requirement of the unsaturations and the molecular formula for 1, a peroxide bridge was assumed to connect C-2 and C-7 by the two remaining oxygen atoms. The ¹³C NMR chemical shift values of C-2 at δ_C 76.0 and C-7 at δ_C 90.0 were consistent with this assumption. The structure of 1 was subsequently confirmed by a single-crystal X-ray diffraction experiment using Cu K α radiation, and its absolute configuration was also established as 2*S*, 3*S*, 6*R*, and 7*S* (Figure 2). The new norsesquiterpene peroxide (1) was named talaperoxide A.

Compound 2 was obtained as colorless crystals. Its molecular formula was established as $C_{16}H_{24}O_5$ by HRESIMS data. The ¹H and ¹³C spectroscopic data for 2 were similar to those of 1 except for the signals of H-1ax, 4eq, 4ax, and 14 (Table 1). Analysis of COSY and HMBC spectroscopic data for 2 suggested that it had the same skeleton structure as that of 1. The different chemical shifts between 2 and 1 were presumably the result of the opposite

configuration at C-7. This structural assumption was confirmed on the basis of a single-crystal X-ray diffraction analysis using Cu K α radiation (Figure 2). The absolute configuration of **2** was consequently established to be 2*S*, 3*S*, 6*R*, and 7*R*. Thus, compound **2** was determined to be an epimer of **1** at C-7. It was named talaperoxide B.

The molecular formula of compound 3 was determined as $C_{14}H_{20}O_4$ (five degrees of unsaturation) by HRESIMS. The ¹H and ${}^{13}C$ NMR spectroscopic data for 3 (Table 2) showed three singlet methyls (Me-12, Me-13, and Me-14), five methylenes (C-1, C-4, C-5, C-9, and C-10), one oxymethine (C-3), three quaternary carbons (C-6, C-7, and C-11), and two ketone carbonyls (C-8 and C-3). Close comparison of the ¹H and ¹³C NMR spectroscopic data with those of 1 revealed that the oxymethine (C-3) in 1 was oxidized to a ketone carbonyl (C-3)in 3. The HMBC correlations from H-1 to C-3 and from H-4 and H-5 to C-3 gave further evidence for the existence of the ketone carbonyl. COSY and HMBC correlations for the rest of the molecule were identical to those observed for compound 1. A NOESY experiment was carried out to determine the relative configuration of 3. The correlations of H-5eq/H₃-14, H-13 established the cis configurations of Me-14/C-5 and of Me-13/ C-5 (Figure 3). In addition, the correlations of H_3 -12/H-1eq, H-1ax led to the trans configuration of Me-12/C-5. On the basis of these experimental data and the probable biosynthetic relationship (see below) to 1 and 2, whose absolute configurations have been determined, the absolute configuration of 3 was assumed to be 2S, 6R, and 7S. Therefore, 3 was determined to be a new norsesquiterpene peroxide and was named talaperoxide C.

Compound 4 was obtained as a white solid. Its molecular formula of $C_{14}H_{20}O_4$ was deduced by HRESIMS, which was identical with that of 3. The ¹H and ¹³C NMR spectroscopic data

Figure 2. Perspective ORTEP drawings for 1, 2, and 5.

for 4 were quite similar to those of 3, except that the chemical shifts of H_3 -14 and H-1eq were changed from δ_H 1.50 to δ_H 1.94 and from δ_H 2.27 to δ_H 2.69, respectively. The NOESY correlations of H-1eq/H-14, H-12 and of H-12/H-14 assigned cis configurations of Me-14/C-1 and Me-12/C-1 (Figure 3). On the basis of chemical shift comparison with that of 3 and biosynthetic considerations (see below), the absolute configuration of 4 was presumed to be 2*S*, 6*R*, and 7*R*. Consequently, this new compound (4) was assigned to be the C-7 epimer of 3, namely, talaperoxide D.

In the case of **5**, the HRESIMS showed a pseudomolecular ion peak at m/z 277.1410 [M + Na]⁺ (calcd 277.1416 for $C_{14}H_{22}O_4Na$). The ¹H and ¹³C NMR spectra (Table 3) displayed

three singlet methyls, five methylenes, two oxymethines, three quaternary carbons, and one ketone carbonyl. This compound was identified as steperoxide B (also named merulin A) by comparing the ¹H and ¹³C NMR and MS data with those reported.^{9,10} However, the absolute configuration of **5** was not determined in the previous reports. On the basis of Cu K α X-ray diffraction data, it was here established to be 2*S*, 3*S*, 6*R*, and 7*S* (Figure 2).

The norsesquiterpene peroxides 1-5, possessing a 6,6,6tricyclic framework and a peroxide bridge, are structurally unique. A possible biosynthetic pathway for these compounds is proposed (Figure 4). The two pairs of epimers (1/2, 3/4) and **5** are thought to be biogenetically related to the chamigrane skeleton.¹¹ The chamigrenyl cation generates **6** through a proton elimination reaction. The double bond of **6** is oxidized from the *re* or *si* face to form two hydroperoxides (**6a** and **6b**),¹² and then **6a** is transformed to **1**, **3**, and **5**, while **6b** is transformed to **2** and **4** by a series of oxidation, dehydration and rearrangement, reduction, and acetylation reactions (Figure S21, Supporting Information).¹³

All norsesquiterpene peroxides 1-5 exhibited lethal activity $(LD_{50} < 10 \text{ ppm})$ in a preliminary test of the brine shrimp, Artemia salina. Compounds 1-5 were further evaluated for cytotoxic activity against human breast cancer cell lines MCF-7 and MDA-MB-435, human hepatoma cell line HepG2, human cervical cancer cell line HeLa, and human prostatic cancer cell line PC-3 by the MTT method as described previously.¹⁴ Compounds 2 and 4 showed cytotoxicity toward these five cancer cell lines with IC₅₀ values between 0.70 and 2.78 μ g/mL. In particular, compound 4 showed promising growth-inhibitory effects on MDA-MB-435, HepG2, and PC-3 with IC₅₀ values of 0.91, 0.90, and 0.70 μ g/mL, respectively. It should be noted that compounds 2 and 4, possessing the R configuration at C-7, showed more potent cytotoxicity toward the five cancer cell lines than compounds 1 and 3, with the S configuration at C-7. These results indicated that the R configuration at C-7 might contribute to the cytotoxic activity. In addition, compound 5, with a hydroxyl group at C-3, displayed better antiproliferative activities than 1, with an acetoxy group at C-3, and 3, with a 3-carbonyl, implying that the hydroxy group probably has an effect on the cytotoxic activity. The results of the bioassays are listed in Table 4.

The antimicrobial activities of metabolites 1-5 were also tested; none of the compounds showed inhibitory effects against Staphylococcus aureus (ATCC 27154), Escherichia coli (ATCC 25922), Sarcina ventriculi (ATCC 29068), Pseudomonas aeruginosa (ATCC 25668), Candida albicans (ATCC 10231), or Aspergillus niger (ATCC 13496) at a concentration of 50 μ g/mL.

EXPERIMENTAL SECTION

General Experimental Procedures. Melting points were determined on an X-4 micromelting point apparatus and are uncorrected. Optical rotations were measured on a Polartronic HHW5 digital polarimeter. IR spectra were measured on a Bruker Vector 22 spectro-photometer using KBr pellets. The NMR spectra were recorded on a Bruker Avance 400 spectrometer at 400 MHz for ¹H and 100 MHz for ¹³C in CDCl₃. All chemical shifts (δ) are given in ppm with reference to the solvent signal (CDCl₃, $\delta_{\rm H}$ 7.26 for ¹H, $\delta_{\rm C}$ 77.23 for ¹³C), and coupling constants (*J*) are given in Hz. LRESIMS spectra were recorded on a Finnigan LCQ-DECA mass spectrometer. HRESIMS spectra were recorded on a Oxford Gemini S Ultra diffractometer. Column chromatography (CC) was performed on silica gel (200–300 mesh,

	3			4		
position	$\delta_{ m C}$, type	$\delta_{ m H\prime}$ mult. (J in Hz)	HMBC	$\delta_{ m C}$, type	$\delta_{ m H\!\prime}$ mult. (J in Hz)	HMBC
1eq	32.3, CH ₂	2.27, m	C-2, 3, 5, 6, 7, 11	25.7, CH ₂	2.69, ddd (14.3, 4.0, 2.1)	C-3
1ax		1.90, m	C-5, 6, 7, 11		1.81, m	C-3, 6, 7, 11
2	81.7, C	4.16, m	C-1, 6	80.7, C	4.21, dd (4.0, 1.8)	C-3, 6
3	206.7, C			207.7, C		
4eq	39.4, CH ₂	2.93, ddd (17.3, 12.0, 8.5)	C-3, 5	38.6, CH ₂	2.88, m	C-3
4ax		2.59, m	C-3, 5, 6		2.47, m	C-3, 5
5eq	26.3, CH ₂	2.33, m	C-1, 3, 4, 6, 7	27.2, CH ₂	2.11, m	C-1, 3, 4, 6, 7, 11
5ax		1.93, m	C-1, 4, 6, 7, 11		1.84, m	C-1, 3, 4, 6, 7
6	42.1, C			43.7, C		
7	91.1, C			90.6, C		
8	207.0, C			207.4, C		
9eq	35.8, CH ₂	2.73, ddd (15.2, 14.4, 6.6)	C-7, 8, 9, 11	35.4, CH ₂	2.85, m	C-8, 10, 11
9ax		2.48, ddd (15.2, 4.8, 2.5)	C-8, 9, 11		2.33, ddd (15.5, 5.5, 2.1)	C-7, 8, 10, 11
10eq	35.9, CH ₂	2.04, td (14.4, 4.8)	C-8, 9, 11, 12, 13	36.5, CH ₂	2.06, m	C-6, 8, 11, 13
10ax		1.64, ddd (14.4, 6.6, 2.5)	C-6, 8, 9, 11, 12		1.67, ddd (14.2, 7.4, 2.1)	C-6, 8
11	37.8, C			36.4, C		
12	26.5, CH ₃	1.02, s	C-6, 10, 11, 13	24.7, CH ₃	1.30, s	C-6, 10, 11, 12
13	24.9, CH ₃	1.30, s	C-6, 10, 11, 12	26.6, CH ₃	1.05, s	C-6, 10, 11, 13
14	22.1, CH ₃	1.50, s	C-6, 7, 8	23.0, CH ₃	1.94, s	C-6, 7, 8

Table 2. ¹H (400 MHz) and ¹³C (100 MHz) NMR Spectroscopic Data for Compounds 3 and 4 (CDCl₃)

Figure 3. Selected NOESY correlations of 3 and 4.

Qingdao Marine Chemical Factory) and Sephadex LH-20 (Amersham Pharmacia).

Fungal Material. The fungus used in this study was isolated from fresh, healthy leaves of *S. apetala*, which were collected in April 2009 from Dongzhaigang Mangrove National Nature Reserve in Hainan Island, China. The fungus was identified as *Talaromyces flavus* by the ITS region (deposited in GenBank, accession no. HQ700311).¹⁵ A voucher strain was deposited in the China Center for Type Culture Collection under patent depository number CCTCC M 2010266.

Extraction and Isolation. The fungus *T. flavus* was fermented on autoclaved rice solid-substrate medium (twelve 500 mL Erlenmeyer flasks, each containing 50 g of rice and 50 mL of distilled water) for 40 days at 25 °C. Following incubation, the mycelia and solid rice medium were extracted with MeOH. The organic solvent was filtered and concentrated under reduced pressure to yield 3.6 g of organic extract. The residue was then divided into 15 fractions (Fr.1–F.15) by column chromatography on silica gel eluted by a gradient of CHCl₃/MeOH from 1:0 to 0:1. Fr.4 (215 mg) was applied to Sephadex LH-20 CC, eluted with petroleum ether/CHCl₃/MeOH (2:1:1), to obtain compounds 1 (3.9 mg) and 2 (1.2 mg). Fr.5 (832 mg) was rechromatographed on silica gel (gradient of CHCl₃/MeOH from 1:0 to 1:1) to give

Table 3. 1 H (400 MHz) and 13 C (100 MHz) NMR Spectroscopic Data for Compound 5 (CDCl₃)

position	$\delta_{ m C}$, type	$\delta_{ m H}$, mult. (J in Hz)
1eq	30.7, CH ₂	2.03, m
1ax		1.54, m
2	79.3, CH	4.11, m
3	69.6, CH	3.75, m
4	32.3, CH ₂	2.14, m
5eq	25.7, CH ₂	2.09, m
5ax		1.57, m
6	41.4, C	
7	90.3, C	
8	208.2, C	
9eq	35.8, CH ₂	2.67, td (15.4, 6.7)
9ax		2.42, ddd (15.4, 4.6, 2.3)
10eq	36.0, CH ₂	1.99, m
10ax		1.56, m
11	37.5, C	
12	26.4, CH ₃	0.96, s
13	24.9, CH ₃	1.24, s
14	21.6, CH ₃	1.39, s

five fractions (Fr.5-1–Fr.5-5). Fr.5-2 (74 mg), Fr.5-3 (154 mg), and Fr.5-5 (31 mg) were applied to Sephadex LH-20 CC eluted with CHCl₃/MeOH (1:1) to yield compounds 3 (3.2 mg), 4 (1.7 mg), and 5 (2.6 mg), respectively.

Talaperoxide A (1): colorless crystals (MeOH); mp 125–127 °C; $[\alpha]^{25}_{D}$ +191 (*c* 0.11 MeOH); IR (KBr) ν_{max} 2961, 2881, 1729, 1370, 1255, 1044, and 965 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz), see Table 1; ESIMS *m*/*z* 319.2 [M + Na]⁺; HRESIMS *m*/*z* 319.1518 [M + Na]⁺ (calcd for C₁₆H₂₄O₅Na, 319.1521).

Figure 4. Possible biosynthetic pathway of compounds 1-5.

Table 4. Cytotoxic Activities of Compounds $1-5^a$

		cell lines					
compound	MCF-7	MDA-MB-435	HepG2	HeLa	PC-3		
1	19.77	11.78	12.93	13.7	5.70		
2	1.33	2.78	1.29	1.73	0.89		
3	6.63	2.64	15.11	12.71	4.34		
4	1.92	0.91	0.90	1.31	0.70		
5	4.17	1.90	6.79	7.97	1.82		
EPI^b	0.56	0.33	0.56	0.51	0.16		

^{*a*} Data are expressed in IC₅₀ values (μ g/mL). MCF-7 and MDA-MB-435: human breast cancer cell lines; HepG2: human hepatoma cell line; HeLa: human cervical cancer cell line; PC-3: human prostatic cancer cell line. ^{*b*} EPI (epirubicin) used as positive control.

Talaperoxide B (**2**): colorless crystals (MeOH); mp 91–93 °C; $[\alpha]^{25}_{D}$ + 261 (*c* 0.07 MeOH); IR (KBr) ν_{max} 2969, 2878, 1720, 1382, 1247, 1102, and 931 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz), see Table 1; ESIMS *m*/*z* 319.1 [M + Na]⁺; HRESIMS *m*/*z* 319.1525 [M + Na]⁺ (calcd for C₁₆H₂₄O₅Na, 319.1521).

Talaperoxide C (**3**): white solid; mp 148–150 °C; $[\alpha]^{25}_{\rm D}$ +225 (c 0.12 MeOH); IR (KBr) $\nu_{\rm max}$ 2952, 2888, 1739, 1723, 1384, 1114, and 1019 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz), see Table 2; ESIMS *m*/*z* 275.1 [M + Na]⁺; HRESIMS *m*/*z* 275.1256 [M + Na]⁺ (calcd for C₁₄H₂₀O₄Na, 275.1259).

Talaperoxide D (**4**): white solid; mp 120–122 °C; $[\alpha]^{25}_{D}$ +126 (*c* 0.08 MeOH); IR (KBr) ν_{max} 2961, 2922, 1736, 1716, 1469, 1378, 1066, and 1044 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz), see Table 2; ESIMS *m*/*z* 275.1 [M + Na]⁺; HRESIMS *m*/*z* 275.1261 [M + Na]⁺ (calcd for C₁₄H₂₀O₄Na, 275.1259).

X-ray Crystallographic Analysis of 1, 2, and 5. All singlecrystal X-ray diffraction data were collected at 123 K on an Oxford Gemini S Ultra diffractometer with Cu K α radiation (λ = 1.54178 Å). The structures were solved by direct methods (SHELXS-97) and refined using full-matrix least-squares difference Fourier techniques. Hydrogen atoms bonded to carbons were placed on the geometrically ideal positions by the "ride on" method. Hydrogen atoms bonded to oxygen were located by the difference Fourier method and were included in the calculation of structure factors with isotropic temperature factors. Crystallographic data for 1, 2, and 5 have been deposited with the Cambridge Crystallographic Data Centre. Copies of the data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-(0)1223-336033, or e-mail: deposit@ccdc.cam.ac.uk).

Crystal data of **1**: $C_{16}H_{24}O_5$, $M_r = 296.35$, orthorhombic, a = 10.9434(2) Å, b = 12.4201(2) Å, c = 22.1019(4) Å, $\alpha = 90^\circ$, $\beta = 90^\circ$, $\gamma = 90^\circ$, V = 3004.05(9) Å³, space group $P_{2_12_12_1}Z = 8$, $D_x = 1.311$ mg/m³, μ (Cu K α) = 0.792 mm⁻¹, and F(000) = 1280. Crystal dimensions: 0.48 × 0.35 × 0.28 mm³. Independent reflections: 4524 ($R_{int} = 0.0229$).

The final R_1 values were 0.0361, $wR_2 = 0.0912$ ($I > 2\sigma(I)$). Flack parameter = 0.002(16). CCDC number: 807999.

Crystal data of **2**: $C_{16}H_{24}O_5$, $M_r = 296.35$, monoclinic, a = 8.73800(10) Å, b = 12.27280(10) Å, c = 14.31590(10) Å, $\alpha = 90^\circ$, $\beta = 97.1630(10)^\circ$, $\gamma = 90^\circ$, V = 1523.25(2) Å³, space group P_{21} , Z = 4, $D_x = 1.292 \text{ mg/m}^3$, $\mu(\text{Cu K}\alpha) = 0.781 \text{ mm}^{-1}$, and F(000) = 640. Crystal dimensions: $0.20 \times 0.15 \times 0.10 \text{ mm}^3$. Independent reflections: S761 ($R_{\text{int}} = 0.0400$). The final R_1 values were 0.0293, $wR_2 = 0.0736$ ($I > 2\sigma(I)$). Flack parameter = 0.05(11). CCDC number: 808000.

Crystal data of **5**: C₁₄H₂₂O₄, $M_r = 254.32$, orthorhombic, a = 7.3125(2) Å, b = 12.4303(5) Å, c = 13.9596(7) Å, $\alpha = 90^\circ$, $\beta = 90^\circ$, $\gamma = 90^\circ$, V = 1268.88(9) Å³, space group $P2_12_12_1$, Z = 4, $D_x = 1.331 \text{ mg/m}^3$, μ (Cu K α) = 0.785 mm⁻¹, and F(000) = 552. Crystal dimensions: 0.48 × 0.46 × 0.40 mm³. Independent reflections: 1984 ($R_{int} = 0.0210$). The final R_1 values were 0.0258, $wR_2 = 0.0661$ ($I > 2\sigma(I)$). Flack parameter = 0.03(7). CCDC number: 807998.

Biological Assays. Antimicrobial activity,¹⁶ brine shrimp lethality assay,¹⁷ and cytotoxic activity¹⁸ were determined according to established procedures. Four bacteria (*S. aureus* (ATCC 27154), *E. coli* (ATCC 25922), *S. ventriculi* (ATCC 29068), *P. aeruginosa* (ATCC 25668)) and two fungi (*C. albicans* (ATCC 10231) and *A. niger* (ATCC 13496)) were used in the antimicrobial test. Ampicillin and nystatin were used as antibacterial and antifungal positive controls, respectively. Five human cancer cell lines (human breast cancer cell lines MCF-7 and MDA-MB-435, human hepatoma cell line HepG2, human cervical cancer cell line HeLa, and human prostatic cancer cell line PC-3) were used in the cytotoxicity bioassay. Epirubicin (EPI) was used as positive control.

ASSOCIATED CONTENT

Supporting Information. NMR spectra of compounds 1–4 and CIF files for compounds 1, 2, and 5. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Tel: +86-20-84034096. Fax: +86-20-84034096. E-mail: ceslyc@ mail.sysu.edu.cn (Y.L.); cesshzhg@mail.sysu.edu.cn (Z.S.).

ACKNOWLEDGMENT

We wish to acknowledge financial support from the National Natural Science Foundation of China (20772162, 20972197), the 863 Foundation of China (2006AA09Z422), the Natural Science Foundation of Guangdong Province of China (9151027501000055), the Science & Technology Plan Project of Guangdong Province of China (2010B030600004), and the Fundamental Research Funds for the Central University of China (11lgjc01). We also thank Dr. L. Jiang for helpful instruction in crystallography.

REFERENCES

(1) Casteel, D. A. Nat. Prod. Rep. 1999, 16, 55-73.

(2) Dembitsky, V. M.; Gloriozova, T. A.; Poroikov, V. V. *Mini-Rev. Med. Chem.* **2007**, *7*, 571–589.

(3) Dembitsky, V. M. Eur. J. Med. Chem. 2008, 43, 223-251.

(4) Meshnick, S. R.; Taylor, T. E.; Kamchonwongpaisan, S. *Microbiol. Rev.* **1996**, *60*, 301–315.

(5) Huang, Z.; Cai, X.; Shao, C.; She, Z.; Xia, X.; Chen, Y.; Yang, J.; Zhou, S.; Lin, Y. *Phytochemistry* **2008**, *69*, 1604–1608.

(6) Wen, L.; Cai, X.; Xu, F.; She, Z.; Chan, W. L.; Vrijmoed, L. L. P.; Jones, E. B. G.; Lin, Y. *J. Org. Chem.* **2009**, *74*, 1093–1098. (7) Xu, F.; Zhang, Y.; Wang, J.; Pang, J.; Huang, C.; Wu, X.; She, Z.; Vrijmoed, L. L. P.; Jones, E. B. G.; Lin, Y. J. Nat. Prod. 2008, 71, 1251–1253.

(8) Yang, J.; Xu, F.; Huang, C.; Li, J.; She, Z.; Pei, Z.; Lin, Y. Eur. J. Org. Chem. 2010, 3692–3695.

(9) Liu, D. Z.; Dong, Z. J.; Wang, F.; Liu, J. K. Tetrahedron Lett. **2010**, *51*, 3152–3153.

(10) Chokpaiboon, S.; Sommit, D.; Teerawatananond, T.; Muangsin, N.; Bunyapaiboonsri, T.; Pudhom, K. J. Nat. Prod. **2010**, *73*, 1005–1007.

(11) Wu, S.; Schoenbeck, M. A.; Greenhagen, B. T.; Takahashi, S.; Lee, S.; Coates, R. M.; Chappell J. Plant Physiol. **2005**, *138*, 1322–1333.

(12) Dewick, P. M. Medicinal Natural Products: A Biosynthetic Approach, 2nd ed.; John Wiley & Sons: Chichester, 2002; p 207.

(13) Ngo, K. S.; Brown, G. D. Tetrahedron 1999, 55, 15109–15126.

(14) Scudiero, D. A.; Shoemaker, R. H.; Paull, K. D.; Monks, A.; Tierney, S.; Nofziger, T. H.; Currens, M. J.; Seniff, D.; Boyd, M. R.

Cancer Res. 1988, 48, 4827–4833. (15) Wang, S.; Li, X. M.; Teuscher, F.; Li, D. L.; Diesel, A.; Ebel, R.;

Proksch, P.; Wang, B. G. J. Nat. Prod. 2006, 69, 1622–1625.
(16) Liu, F.; Cai, X. L.; Yang, H.; Xia, X. K.; Guo, Z. Y.; Yuan, J.; Li,

(10) Liu, F.; Cai, X. L.; Tang, H.; Xia, X. K.; Guo, Z. T.; Tuan, J.; Li, M. F.; She, Z. G.; Lin, Y. C. *Planta Med.* **2010**, *76*, 185–189.

(17) Meyer, B. N.; Ferrigni, N. R.; Putnam, J. E.; Jacobsen, L. B.; Nichols, D. E.; McLaughlin, J. L. *Planta Med.* **1982**, *45*, 31–34.

(18) Scudiero, D.; Shoemaker, R.; Paull, K.; Monks, A.; Tierney, S.; Nofziger, T.; Currens, M.; Seniff, D.; Boyd, M. *Cancer Res.* **1988**, *48*, 4827–4833.